GE Grid Solutions

GPM Field and Stator Ground Fault Protection Modules

Instruction Manual

Product version: 2.0x GE publication code: 1601-0256-AH1 (GEK-113231F)

Copyright © 2018 GE Multilin Inc. All rights reserved.

GPM Field and Stator Ground Fault Protection Modules Instruction Manual for version 2.0x.

GPM, EnerVista, FlexLogic, Universal Relay, Multilin, and GE Multilin are trademarks or registered trademarks of GE Multilin Inc. or General Electric Company Corporation.

The contents of this manual are the property of GE Multilin Inc. This documentation is furnished on license and may not be reproduced in whole or in part without the permission of GE Multilin. The content of this manual is for informational use only and is subject to change without notice.

Part number: 1601-0256-AH1 (October 2018)

GPM Field and Stator Ground Fault Protection Modules

Table of contents

1	INTRODUCTION	Safety symbols and definitions	1
		General cautions and warnings	
		For further assistance	2
2	PRODUCT	Overview	
	DESCRIPTION	Specifications	6
3	FIELD GROUND	Field ground low-voltage module	9
	MODULE	Mechanical installation	
		Electrical installation	
		Field ground high-voltage module	
		Mechanical installation	
		Electrical installation	
		Upgrade the GPM-F firmware	20
4	STATOR GROUND	Overview	23
	MODULE	Mechanical installation	23
		Electrical installation	
		Upgrade the GPM-S firmware	
5	SETTINGS	Stator ground protection	
		Overview	
		Sub-harmonic stator ground fault settings	
		Field ground fault protection	
		Overview	
		Field ground settings	
		Field current settings	
6	ACTUAL VALUES	Sub-harmonic stator ground actual values	
	AND MESSAGES	Field ground actual values	
		GPM-F module messages	

7	ADDITIONAL PARAMETERS	FlexLogic operands Modbus memory map Modbus memory map data formats	
8	MAINTENANCE	Repairs Storage Disposal	

A MISCELLANEOUS

GPM Field and Stator Ground Fault Protection Modules

Chapter 1: Introduction

This chapter outlines safety and technical support information.

Safety symbols and definitions

Before attempting to install or use the device, review all safety indicators in this document to help prevent injury, equipment damage, or downtime.

The following safety and equipment symbols are used in this document.

Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE

Indicates practices not related to personal injury.

General cautions and warnings

The following general safety precautions and warnings apply.

Ensure that all connections to the product are correct so as to avoid accidental risk of shock and/or fire, for example such as can arise from high voltage connected to low voltage terminals.

Follow the requirements of this manual, including adequate wiring size and type, terminal torque settings, voltage, current magnitudes applied, and adequate isolation/ clearance in external wiring from high to low voltage circuits.

Use the device only for its intended purpose and application.

Ensure that all ground paths are uncompromised for safety purposes during device

operation and service.

Ensure that the control power applied to the device, the AC current, and voltage input match the ratings specified on the relay nameplate. Do not apply current or voltage in excess of the specified limits.

Only qualified personnel are to operate the device. Such personnel must be thoroughly familiar with all safety cautions and warnings in this manual and with applicable country, regional, utility, and plant safety regulations.

Hazardous voltages can exist in the power supply and at the device connection to current transformers, voltage transformers, control, and test circuit terminals. Make sure all sources of such voltages are isolated prior to attempting work on the device.

Hazardous voltages can exist when opening the secondary circuits of live current transformers. Make sure that current transformer secondary circuits are shorted out before making or removing any connection to the current transformer (CT) input terminals of the device.

For tests with secondary test equipment, ensure that no other sources of voltages or currents are connected to such equipment and that trip and close commands to the circuit breakers or other switching apparatus are isolated, unless this is required by the test procedure and is specified by appropriate utility/plant procedure.

When the device is used to control primary equipment, such as circuit breakers, isolators, and other switching apparatus, all control circuits from the device to the primary equipment must be isolated while personnel are working on or around this primary equipment to prevent any inadvertent command from this device.

Use an external disconnect to isolate the mains voltage supply.

Personal safety can be affected if the product is physically modified by the end user. Modifications to the product outside of recommended wiring configuration, hardware, or programming boundaries is not recommended end-use practice. Product disassembly and repairs are not permitted. All service needs to be conducted by the factory.

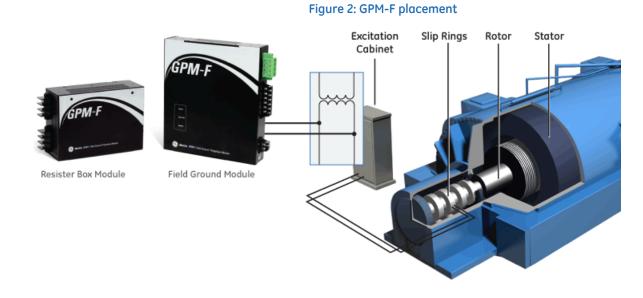
For further assistance

For product support, contact the information and call center as follows. GE Grid Solutions 650 Markland Street Markham, Ontario Canada L6C 0M1 Worldwide telephone: +1 905 927 7070 Europe/Middle East/Africa telephone: +34 94 485 88 54 North America toll-free: 1 877 547 8629 Fax: +1 905 927 5098 Worldwide e-mail: <u>multilin.tech@ge.com</u> Europe e-mail: <u>multilin.tech.euro@ge.com</u> Website: <u>http://www.gegridsolutions.com/multilin</u>

GPM Field and Stator Ground Fault Protection Modules

Chapter 2: Product description

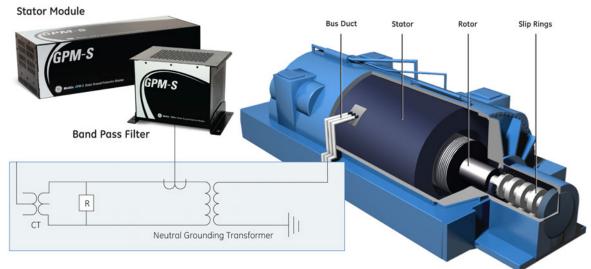
Overview


A ground protection module (GPM) is used with the G60 Generator Protection System and MiCOM Agile P345 Generator Protection System in the following configurations:

- Field low voltage protection system for voltages up to 600 V DC, order code GPM-F-L
- Field high voltage protection system for voltages greater than 600 V DC, order code GPM-F-H
- Stator protection system for G60 or MiCOM Agile P345, order code GPM-S

The following figure compares these systems.

	i igue - contrator gra	
GPM-F-L Field ground low-voltage protection system		GPM-F-L: Field ground low-voltage protection module
GPM-F-H Field ground		GPM-F-HM: Field ground high-voltage protection module
high-voltage protection system	GPM-F	GPM-F-R: Field ground protection high-voltage resistor box
	GPM-S	GPM-S-G: Stator ground 20 Hz generator module
GPM-S Stator ground protection system	GPM-S	GPM-S-B: Stator ground band pass filter module
		204-SD-43737: Stator ground protection CT


Figure 1: Generator ground protection components

The following figures show placement of GPM-F and GPM-S units.

Figure 3: GPM-S placement

100% Stator Ground Fault Detection

- The 100% stator ground fault protection is based on sub-harmonic injection
 20Hz voltage is injected to detect ground faults at any point across 100% of the winding
 The stator ground module works in combination with the G60 to provide 100% stator ground fault protection
- Operational during generator start-up, running and stopped conditions

The GPM units are set up and run from the G60 or MiCOM Agile P345.

Specifications

GPM-F CONTACT INPUTS

Internal wetting:

Input comparator threshold: External contact: Current when energized: Debounce time:

GPM-F CRITICAL FAILURE RELAY

Make and carry:

Continuous carry: Break (DC inductive, L/R = 40 ms): Operate time: Contact material:

GPM-F POWER SUPPLY GPM-F-L:

GPM-F-HM:

GPM-F-R

Current limiting resistor: Voltage divider resistor: Field voltage outputs: Field voltage inputs:

GPM-S-G CONTACT INPUTS

Field voltage:

Internal wetting: Input comparator threshold: External contact: Current when energized: Debounce time: Field voltage:

GPM-S-G CRITICAL FAILURE RELAY

Terminals: Make and carry: Continuous carry: Break (DC inductive, L/R = 40 ms): A3 NC, A7 NO, A8 common 30 A for 0.2 s as per ANSI C37.90 8 A 1 A at 24 V 0.5 A at 48 V 0.3 A at 125 V 0.2 A at 250 V < 8 ms silver alloy

Operate time: Contact material:

GPM-S-G POWER SUPPLY

Power supply:

100 to 240 V AC at 50/60 Hz and 110 VA 125 to 250 V DC at 110 W terminals (B8 Earth Ground, B9 Neutral or Negative DC, B10 Line or Positive DC)

12.5 $\Omega \times 4$ 5 $\Omega \times 3$ 600 V DC rated field voltage. terminals (A3 F1, A5 F(-), A7 F(+)) 800 V DC rated field voltage. terminals (B1 F2+, B3 F2, C1 F-)

terminals (A1 Line or Positive DC, A2 Neutral or Negative DC,

24 V DC, terminals (B6 I/P#3, B7 I/P#2, B8 I/P#1, B9 I/P

30 A for 0.2 s as per ANSI C37.90, terminals (B10 NC, B12 NO,

1 A at 24 V, 0.5 A at 48 V, 0.3 A at 125 V, 0.2 A at 250 V

100 to 240 V AC at 50/60 Hz and 10 VA

100 to 240 V AC at 50/60 Hz and 10 VA

125 to 250 V DC at 10 W

125 to 250 V DC at 10 W

A3 Earth Ground)

common)

6 V DC

< 10 mA

B11 common)

10 ms

dry

8 A

< 8 ms

silver alloy

600 V DC rated field voltage. terminals (C1 FGND, C2 F1, C3 F(-), C4 F(+)) 24 V DC, terminals (A1 I/P#1, A2 I/P #2, A6 I/P common) 6 V DC dry

< 10 mA 10 ms 600 V DC rated field voltage

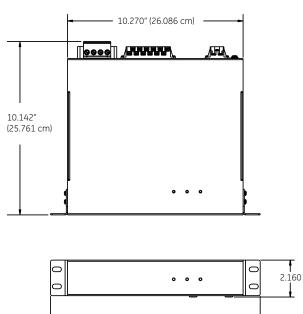
Output ratings:	26 V rectangular at 20 Hz, load capability 80 VA
GPM-S-B	
Power rating:	80 VA
Input ratings:	maximum 30 V rectangular at 20 Hz, terminals (A1 Input1, A3 Input2)
Output rating:	maximum 30 V rectangular at 20 Hz (field load dependent), terminals (B1 Output1, B3 Output2)
Divider Input:	maximum 480 V AC 50/60Hz. terminals (B6 Divider high, B7 Divider low)
Divider Output:	maximum 240 V AC 50/60Hz. terminals (A6 Divider out, A7 Divider Low)

STATOR GROUND PROTECTION CT Part number: 204-SD-43737

Part number:	204-SD-43737
Turns ratio:	400:5A
Rating factor (RF):	3.0
Frequency:	20 Hz
Voltage insulation:	600 V
Basic impulse level (BIL):	10 kV
Calculated relay class at 20 Hz:	C20
Approximate weight:	35 lbs (15.9 kg)

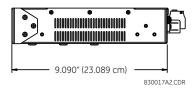
Test	Reference	Test level		
	standard	GPM-F types	GPM-S types	
Dielectric voltage withstand	EN 60255-5	2.3 kV AC / 4.6 kV DC	2.3 kV AC / 3.3 kV DC	
Impulse voltage withstand	EN 60255-5	5 kV	5 kV	
Insulation	EN 60255-5	500 V DC	500 V DC	
Damped oscillatory	IEC 61000-4-18 IEC 60255-22-1	2.5 kV CM, 1 kV DM	2.5 kV CM, 1 kV DM	
Electrostatic discharge	EN 61000-4-2 IEC 60255-22-2	Level 4	Level 4	
RF immunity	EN 61000-4-3 IEC 60255-22-3	20 V/m	20 V/m	
Fast transient disturbance	EN 61000-4-4 IEC 60255-22-4	Class A and B	Class A and B	
Surge immunity	EN 61000-4-5 IEC 60255-22-5	Level 4	Level 4	
Conducted RF immunity	EN 61000-4-6 IEC 60255-22-6	Level 3	Level 3	
Voltage interruption and ripple DC	IEC 60255-11	15% ripple, 1 ms to 5 s interrupts	15% ripple, 1 ms to 5 s interrupts	
Radiated and conducted emissions	CISPR11 / CISPR22 / IEC 60255-25	Class A	Class A	
Sinusoidal vibration	IEC 60255-21-1	Class 2	Class 1	
Shock and Bump	IEC 60255-21-2	Class 2	Class 1	
Seismic	IEC 60255-21-3	Class 2	Class 1	
Power magnetic immunity	IEC 61000-4-8	Level 5	Level 5	
Pulse magnetic immunity	IEC 61000-4-9	Level 4	Level 4	
Damped magnetic immunity	IEC 61000-4-10	Level 4	Level 4	

Test	Reference	Test level	
	standard	GPM-F types	GPM-S types
Voltage dip and interruption	IEC 61000-4-11	0%, 40%, 70%, 80% dips; 250/300 cycle interrupts	0%, 40%, 70%, 80% dips; 250/300 cycle interrupts
Voltage ripple	IEC 61000-4-17	15% ripple	15% ripple
Ingress protection	IEC 60529	IP10	IP10
Environmental (cold)	IEC 60068-2-1	–40°C, 16 hrs	–40°C, 16 hrs
Environmental (dry heat)	IEC 60068-2-2	85°C, 16hrs	85°C, 16hrs
Relative humidity cyclic	IEC 60068-2-30	6 day, variant 1	6 day, variant 1
SWC oscillatory	IEEE/ANSI C37.90.1	2.5 kV,1 MHz	2.5 kV,1 MHz
SWC transients	IEEE/ANSI C37.90.1	4 kV 2.5 kHz	4 kV 2.5 kHz
RF immunity	IEEE/ANSI C37.90.2	20 V/m	20 V/m
ESD	IEEE/ANSI C37.90.3	15 kV air / 8 kV contact	15 kV air / 8 kV contact
Safety	UL 508	e83849 NKCR2	e83849 NKCR2
	UL C22.2-14	e83849 NKCR8	e83849 NKCR8

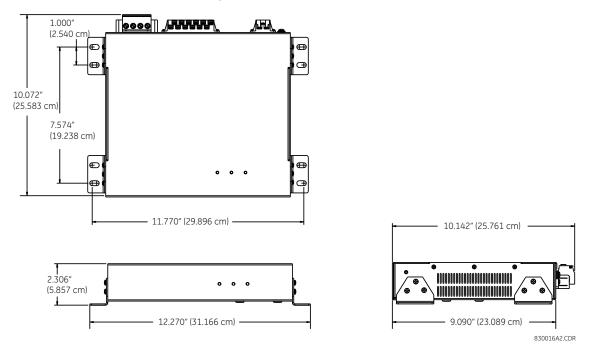

GPM Field and Stator Ground Fault Protection Modules

Chapter 3: Field ground module

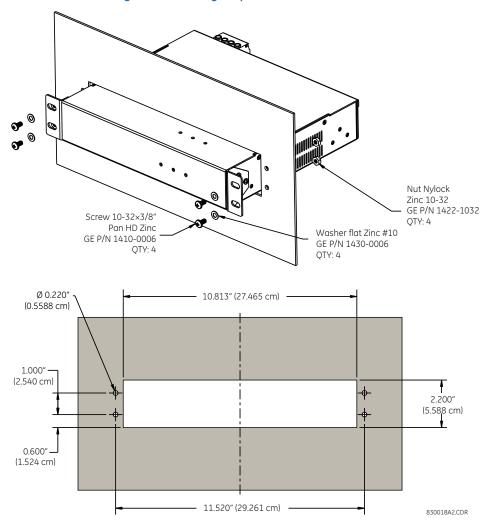
Field ground low-voltage module

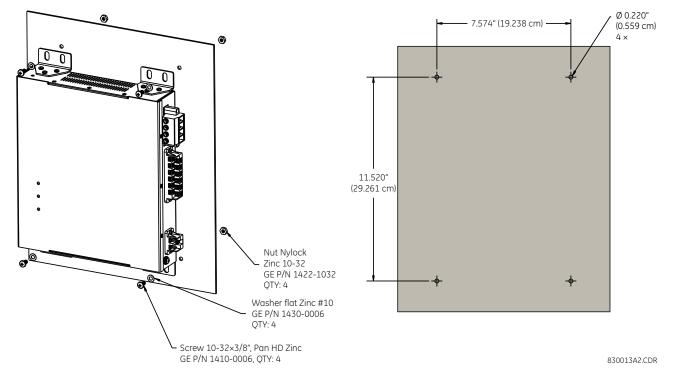

Mechanical installation

The field ground low-voltage protection system consists of one module: the field ground protection low-voltage module (GPM-F-L). The figures show dimensions and mounting.



- 12.270" (31.166 cm)


Figure 4: Dimensions for panel-mounted GPM-F-L



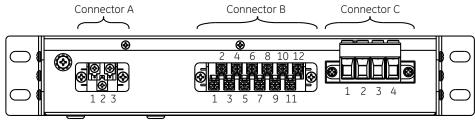


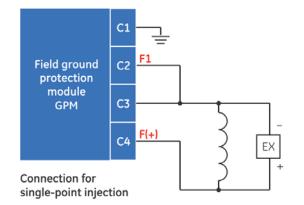
Figure 7: Mounting for wall-mounted GPM-F-L

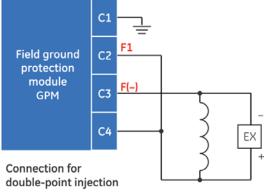
Electrical installation

There are three connectors on the field protection low-voltage module, as shown in the following figure.

Figure 8: Rear view of GPM-F-L showing terminal blocks

830023A1.CDR

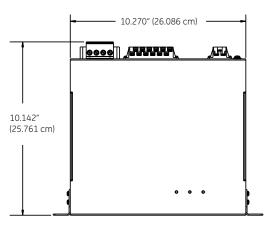

The table outlines the pin assignments. Three contact inputs are provided. Upon closure of any of the contact inputs, low frequency injection stops.


Table 1: Pin assignments for GPM-F-L

Pin	Label	Definition			
Connec	Connector A				
1	L(+)	AC-L (DC+)			
2	N(-)	AC-N (DC-)			
3	GND	Ground			
Connec	tor B				
1	CH1(+)	RS485 channel 1 positive			
2	CH1(-)	RS485 channel 1 negative			
3	СОМ	RS485 common			
4	CH2(+)	RS485 channel 2 positive			
5	CH2(-)	RS485 channel 2 negative			
6	IN3	Contact input 3			
7	IN2	Contact input 2			
8	IN1	Contact input 1			
9	СОМ	Contact input common			
10	NC	Relay NC (normally closed)			
11	СОМ	Relay common			
12	NO	Relay NO (normally open)			
Connector C					
1	FGND	Field ground			
2	F1	Injection to excitation positive (single point) / excitation positive (double point)			
3	F(-)	Injection to excitation negative			
4	F(+)	Excitation positive for fault location (optional connection)			

The figure illustrates how to wire the GPM-F-L module for single and double point injections.

Figure 9: Connecting a field ground protection module


830759A3.CDR

Field ground high-voltage module

Mechanical installation

The field ground high-voltage protection system consists of two modules: the field ground protection high-voltage module (GPM-F-HM) and the field ground protection high-voltage resistor box (GPM-F-R). Both are required. The figures show dimensions and mounting.

Figure 10: Dimensions for panel-mounted GPM-F-HM

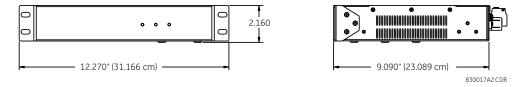
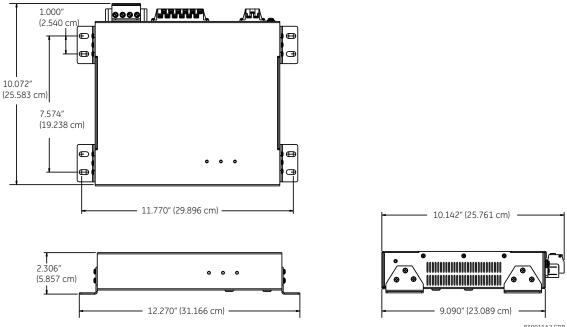
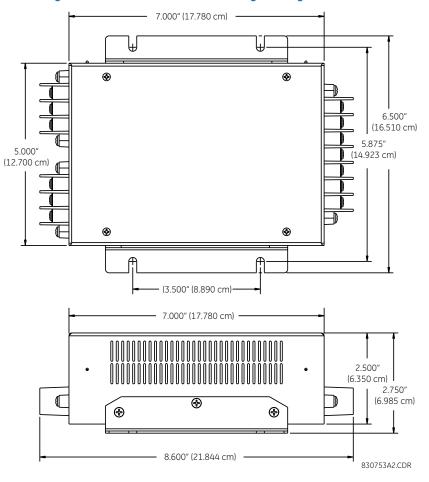
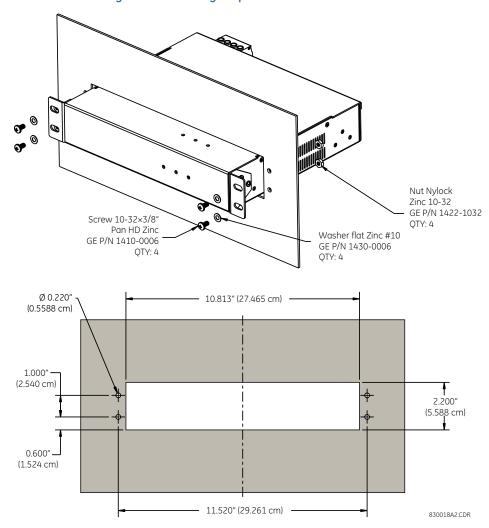



Figure 11: Dimensions for wall-mounted GPM-F-HM

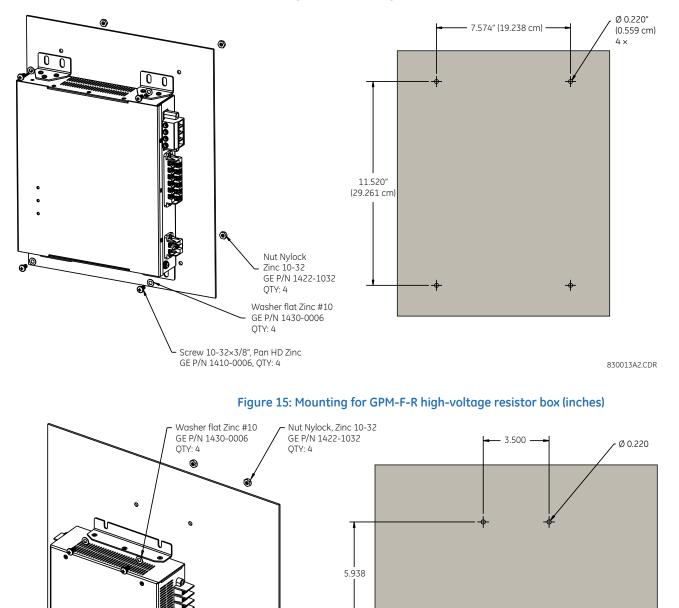
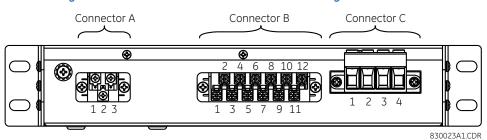

Figure 12: Dimensions for GPM-F-R high-voltage resistor box

Figure 13: Mounting for panel-mounted GPM-F-HM

ଟ

R

Figure 14: Mounting for wall-mounted GPM-F-HM


Screw 10-32×3/8"

Pan HD Zinc, GE P/N 1410-0006, QTY: 4

830019A1.CDR

Electrical installation

There are three connectors on the field ground protection high-voltage module, as shown in the following figure.

Figure 16: Rear view of GPM-F-HM module showing terminal blocks

The table outlines the pin assignments. Three contact inputs are provided. Upon closure of any of the contact inputs, low frequency injection stops.

Table 2: Pin assignments for GPM-F-HM

Pin	Label	Definition			
Conne	Connector A				
1	L(+)	AC-L (DC+)			
2	N(-)	AC-N (DC-)			
3	GND	Ground			
Conne	ctor B	·			
1	CH1(+)	RS485 channel 1 positive			
2	CH1(-)	RS485 channel 1 negative			
3	СОМ	RS485 common			
4	CH2(+)	RS485 channel 2 positive			
5	CH2(-)	RS485 channel 2 negative			
6	IN3	Contact input 3			
7	IN2	Contact input 2			
8	IN1	Contact input 1			
9	COM	Contact input common			
10	NC	Relay NC (normally closed)			
11	COM	Relay common			
12	NO	Relay NO (normally open)			
Conne	Connector C				
1	FGND	Field ground			
2	F1	Injection to excitation negative (single point) /excitation positive (double point)			
3	F(-)	Injection to excitation negative			
4	F(+)	Excitation positive for fault location (optional connection)			

There are three connectors on the field ground protection high-voltage resistor box, as shown in the following figure.

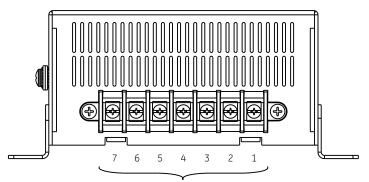
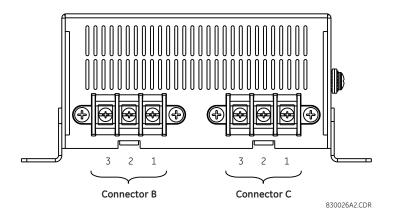



Figure 17: GPM-F-R module showing terminal blocks

Connector A

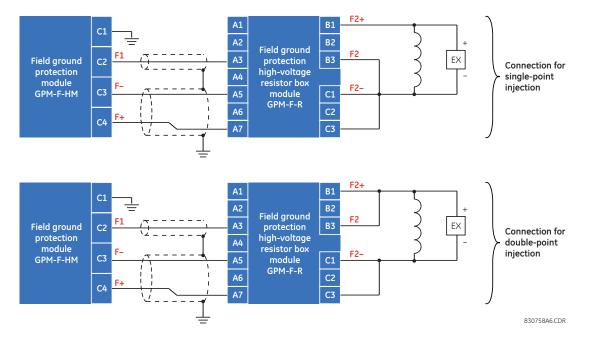

The table outlines the pin assignments.

Table 3: Pin assignments for GPM-F-R

Pin	Label	Definition			
Conne	Connector A				
1	A1	Not used			
2	A2	Not used			
3	A3	Injection secondary (F1)			
4	A4	Not used			
5	A5	Excitation secondary negative (F–)			
6	A6	Not used			
7	A7	Excitation secondary positive (F+)			
Connector B					
1	B1	Excitation primary positive (F2+)			
2	B2	Not used			
3	B3	Injection to excitation positive (F2)			
Conne	Connector C				
1	C1	Injection to excitation negative / excitation primary negative (F2–)			
2	C2	Not used			
3	C3	Not used			

The following figure illustrates how to wire the GPM-F-HM module with the GPM-F-R resistor box for both single-point injection and double-point injection. To connect the units:

- 1. Externally short terminals C1 and C3 of the GPM-F-R high-voltage resistor box for both single-point injection and double-point injection.
- 2. Shield the connection between F1 (terminal C2) on the GPM-F-HM field ground protection module and terminal A3 on the GPM-F-R high-voltage resistor box module. Keep the connection length as short as possible, and do not exceed 10 meters.
- 3. Shield the connection between the F+ and F- pair (terminals C3 and C4) on the GPM-F-HM field ground protection module and terminals A5 and A7 on the GPM-F-R highvoltage resistor box module. Keep the length as short as possible, and do not exceed 10 meters.

Figure 18: Connecting high-voltage module to high-voltage resistor box

Upgrade the GPM-F firmware

Perform the upgrade using the front port and one of the computer COM ports 1 to 4. The process also works for a serial port device, taking longer to complete (approximately 5 minutes).

To upgrade the firmware for the GPM-F modules:

- 1. Start the EnerVista UR Setup software.
- 2. Open the G60 device so that it appears in the online window.

- Ener¥ista UR Setup <u>File Online Offline View Security Help</u> 🖆 🕒 🌮 🕸 🖺 💾 🖾 🖉 🔍 🔍 💷 🖪 🎦 🔁 👪 💥 🔺 Online Window x A Device Setup GE Multilin (ge Device G60 IED 1 • 1000 Nov M 5 I/0 Remote Site 1 🗄 ---- G60 IED 1 ≟---- Device Definition Order Code: G60-H07-HCH-F8F Version: 6.0x - Description: (None) Interface: IP:192.168.0.28 | Addr:254 | Port: 502 ±--- Commands User Displays Targets Actual Values
 Maintenance Modbus Analyzer - Change Front Panel - Update Firmware Update GPM-F Firmware - Retrieve file - Reboot Relay Command Site Clear Records Synchronize Devices Site Event Recorder - Site Targets
- 3. Navigate to Maintenance > Update GPM Firmware.

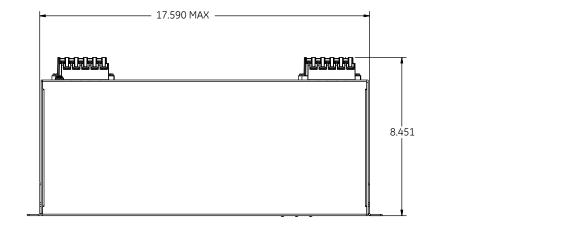
4. Select the appropriate firmware file.

LOAD FIRMWAR	RE	<u>? ×</u>
Look in	n: 🗀 UR 💽 🖨 🛗 🎫	
My Recent Documents Desktop My Documents My Computer	GPM-F_1458.bin GPM-F_1459.bin GPM-F_1460.bin GPM-F_1461.bin GPM-F_1462.bin	
My Network Places	File name: GPM-F_1460.bin	Open Cancel

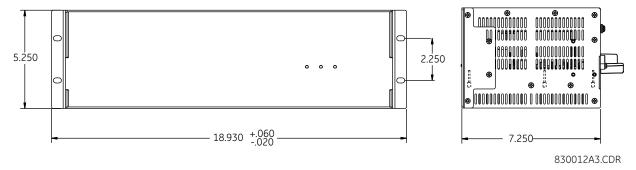
5. Click the **Open** button to start the firmware upgrade.

GPM Field and Stator Ground Fault Protection Modules

Chapter 4: Stator ground module


Overview

Using 100% stator ground fault protection based on sub-harmonic injection, a 20 Hz voltage is injected to detect ground faults at any point across 100% of the winding. The stator ground module works in combination with the G60 or MiCOM Agile P345 to provide 100% stator ground fault protection that is operational during generator start-up, running, and stopped conditions.


Mechanical installation

The stator ground protection system consists of three modules: the stator ground protection 20 Hz generator module (GPM-S-G), the stator ground band pass filter module (GPM-S-B), and the stator ground protection CT (204-SD-43737). All three are required. The following figures show dimensions and mounting.

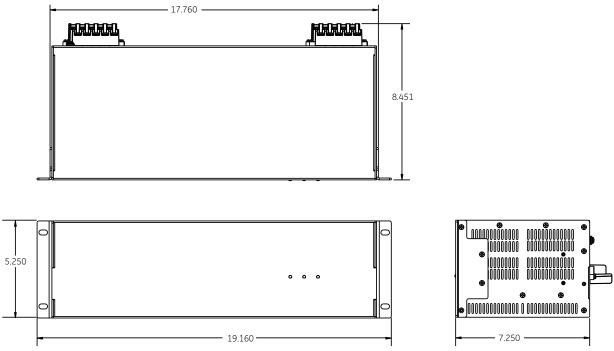

With GPM-S, use a CT/VT module with Sensitive Ground capability (for example 8G, 8J, 8M, 8R) to connect stator ground protection CT (204-SD-43737) input to the G60 device.

Figure 19: Dimensions for panel-mounted GPM-S-G (second generation) (inches)

Figure 20: Dimensions for panel-mounted GPM-S-G (discontinued) (inches)

830012A2.CDR

Figure 21: Dimensions for wall-mounted GPM-S-G (inches)

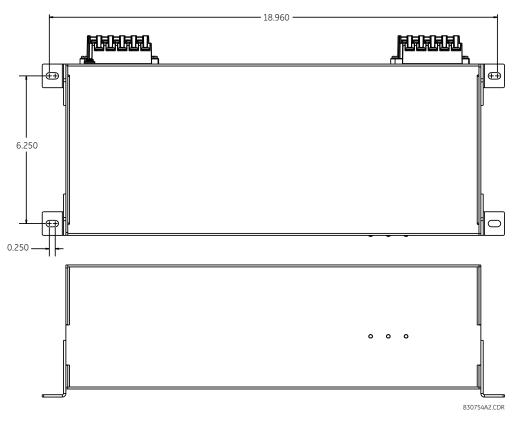
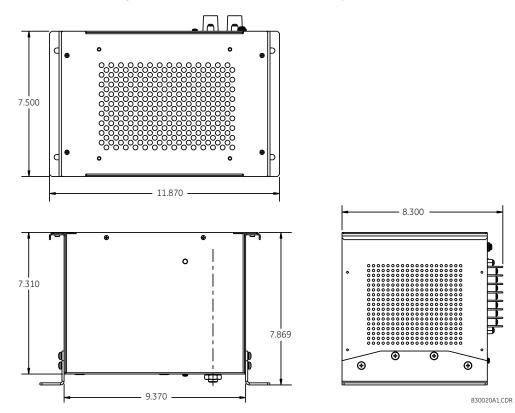
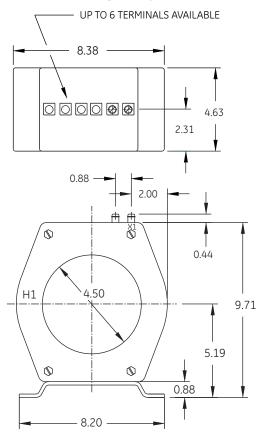
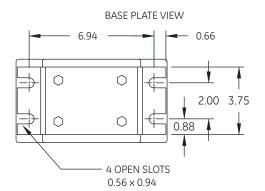





Figure 22: Dimensions for GPM-S-B band pass filter (inches)

Figure 23: Dimensions for stator ground protection CT (204-SD-43737) (inches)

Terminals are brass No. 10-32 female with one screw, flat washer, and lock washer 830027A1.cdr

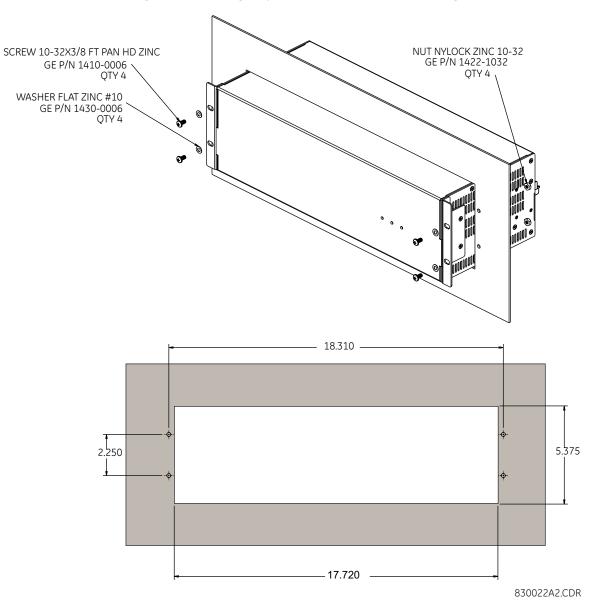


Figure 24: Mounting for panel-mounted GPM-S-G (second generation) (inches)

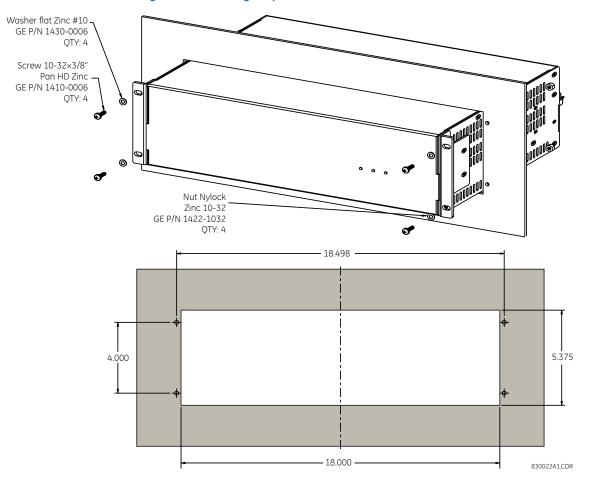


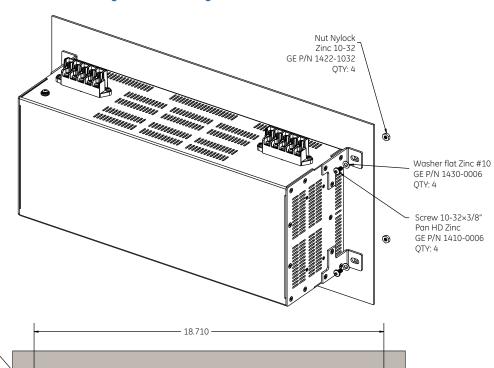
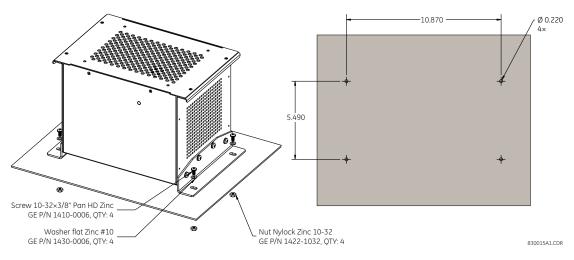
Figure 25: Mounting for panel-mounted GPM-S-G (discontinued) (inches)

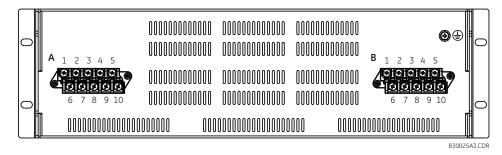
Ø 0.220 4 ×

-\$

6.250

830021A1.CDR


Figure 27: Mounting for GPM-S-B band pass filter (inches)

Electrical installation

There are two connectors on the stator ground protection 20 Hz generator module, as shown in the following figure.

Figure 28: Rear view of GPM-S-G showing terminal blocks

The table outlines the pin assignments. Two contact inputs are provided. Upon closure of any of the contact inputs, 20 Hz injection stops.

Table 4: Pin assignments for GPM-S-G

Pin	Label	Definition		
Connector A				
1	A1	Contact input 1		
2	A2	Contact input 2		
3	A3	Alarm relay NC (normally closed)		
4	A4	Not used		
5	A5	Output 1		
6	A6	Contact input common		
7	A7	Alarm relay NO (normally open)		
8	A8	Alarm relay common		
9	A9	Not used		
10	A10	Output 2		
Connec	Connector B			
1	B1	Not used		
2	B2	Not used		
3	B3	Not used		
4	B4	Not used		
5	B5	Not used		
6	B6	Not used		
7	B7	Not used		
8	B8	Ground		
9	B9	Power neutral / DC negative		
10	B10	Power line / DC positive		

There are two connectors on the stator ground protection band pass filter module, as shown in the following figure.

Electrical shock hazard. INTERNALLY CHARGED CAPACITORS

A high voltage potential exists across terminals A1/B5 and terminals B1/A5 after power is removed (up to 500 V). Take extra care to avoid accidental short circuit with terminals A1/B5 and B1/A5.

HOW TO REMOVE CHARGE FROM TERMINALS

Discharge the GPM-S-B through terminal A1 and B1 before installation or maintenance as follows. Temporarily connect one wire (minimum 18 AWG) between terminals A1 and A7 and another wire (minimum 18 AWG) between B1 and B6 for two seconds. Remove these connections after the capacitor discharge routine.

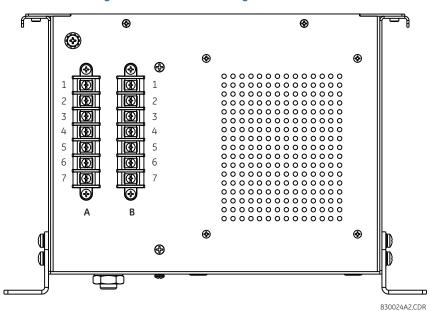
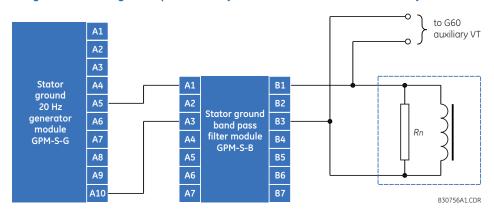


Figure 29: GPM-S-B showing terminal blocks

The table outlines the pin assignments.


Table 5: Pin assignments for GPM-S-B

Pin	Label	Definition
Connector A		
1	A1	Input 1
2	A2	Not used
3	A3	Input 2
4	A4	Not used
5	A5	Reserved
6	A6	Divider out
7	A7	Divider low
Connector B		

Pin	Label	Definition
1	B1	Output 1
2	B2	Not used
3	B3	Output 2
4	B4	Not used
5	B5	Reserved
6	B6	Divider high
7	B7	Divider low

The following figure illustrates how to connect the stator ground 20 Hz generator module with the band pass filter module where the neutral grounding transformer (NGT) secondary voltage is less than or equal to 240 V.

Figure 30: Stator ground protection system connections (NGT secondary ≤ 240 V)

The following figure illustrates how to connect the stator ground 20 Hz generator module with the band pass filter module where the NGT secondary voltage is greater than 240 V.

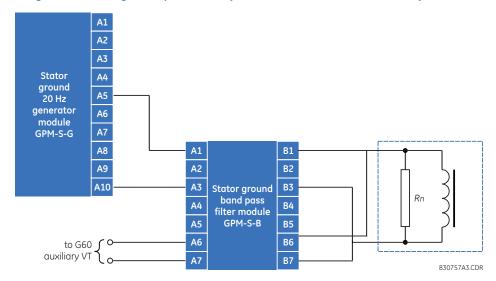


Figure 31: Stator ground protection system connections (NGT secondary > 240 V)

Upgrade the GPM-S firmware

Perform the upgrade using the front port and one of the computer COM ports 1 to 4. The process also works for a serial port device, taking longer to complete (approximately 5 minutes).

To upgrade the firmware for the GPM-S modules:

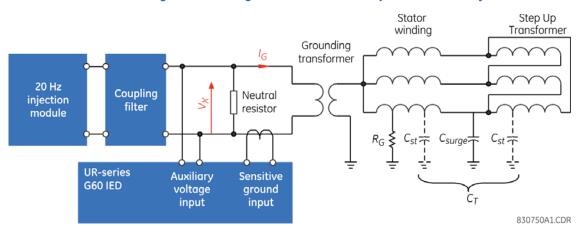
- 1. Start the EnerVista UR Setup software.
- 2. Open the G60 device so that it appears in the online window.
- 3. Navigate to Maintenance > Update Firmware.
- 4. Select the appropriate firmware file.
- 5. Click the **Open** button to start the firmware upgrade.

GPM Field and Stator Ground Fault Protection Modules

Chapter 5: Settings

Stator ground protection

Overview


For the sub-harmonic injection based 100% stator ground protection, configure the stator ground source as follows:

- Configure the voltage measured at the neutral of the machine as the auxiliary VT bank. The element extracts the 20 Hz component of the auxiliary voltage from the source in order to calculate resistance. The fundamental frequency component from the same input is extracted when the same source is configured for auxiliary overvoltage protection element to provide 95% stator ground fault protection. Select the auxiliary VT connection setting as "Vn" for this element.
- Configure current measured at the secondary of the neutral grounding transformer of the machine as the sensitive ground CT bank. The element extracts the 20 Hz component of the ground current from the source in order to calculate resistance.
- This source can be independent of any of the other inputs from the generator, such as neutral end CTs, terminal end CTs, and terminal VTs. Or combine these auxiliary VT and sensitive ground CT with either neutral side or terminal side inputs within the same source settings.
- In addition, set the relay with frequency tracking enabled and, for the source used as the G60 Frequency And Phase Reference setting, use the one connected to generator terminal VTs. The tracking frequency, which is essentially the generator frequency, blocks the sub-harmonic stator ground protection and auxiliary over-voltage protection in the frequency range of 15 to 25 Hz.

Sub-harmonic stator ground fault settings

A voltage source placed at the neutral of the generator produces a current for ground faults anywhere on the stator winding. This source is coupled to the primary circuit using the existing neutral grounding transformer. The following figure shows a typical high-impedance grounded generator that is protected against ground faults using the sub-harmonic injection method. The neutral resistor is chosen to limit the ground fault current to a low value (less than 25 A) in order to minimize damage. A sub-harmonic frequency

voltage signal is injected into the neutral of the generator. Under normal conditions, a resulting current flows through the surge capacitors (C_s) and through the stray capacitance of the stator and step-up transformer windings. When a ground fault develops on the stator winding, an additional current flows through the resistance R_G . The value of R_G is derived from the measurement of the injected voltage and the resulting current.

Figure 32: Stator ground fault detection by sub-harmonic injection

An AC signal is injected so that it can be coupled through an injection transformer to the primary circuit. The signal is of a low frequency in order to minimize the effects of the capacitance of the primary circuit. A frequency of 20 Hz is chosen.

Referring to the figure, the admittance seen looking into the grounding transformer is

$$Y = \frac{1}{N^2} \times \frac{I_G}{V_X} = \frac{1}{R_G} + j\omega C_T$$
 Eq. 1

where

 R_G is the ground fault resistance

 C_T is the total capacitance to ground

N is the neutral grounding transformer ratio

 V_X is the measured sub-harmonic voltage

 I_{G} is the measured sub-harmonic current

The ground fault resistance can be calculated by measuring the 20 Hz voltage and current phasors at the secondary of the grounding transformer. This is done by the G60. An overcurrent element responding to the sub-harmonic provides backup protection.

For machines that can operate at sub-synchronous frequencies (for instance a gas turbine that employs static starting), the function is blocked at frequencies between 15 and 25 Hz. This ensures that the voltage and current produced by the generator does not leak into the sub-harmonic ground fault measurements.

In addition, a check for minimum values of injected voltage and current guards against a failure of the injection unit or a short or open circuit in the external circuit. In addition, the critical-fail relay contact of the 20 Hz generator can also be connected to one of the contact inputs of G60 and the sub-harmonic stator ground element can be blocked.

The stator ground source settings determine the signals that are applied for V_X , I_G , and frequency. The resistance is reported in primary ohms. Therefore, the VT ratio setting of the auxiliary VT input must match the turns ratio of the neutral grounding transformer and the CT primary setting of the ground CT input must match that of the CT used to measure ground current.

When the magnitude of R_G is large, the resulting current I_G is very small and the G60 sensitive ground input is used to make this measurement. Thus, a CT/VT module with sensitive ground current input needs to be present in a G60 when used for sub-harmonic stator ground protection.

The following accessory modules are required for sub-harmonic injection based stator ground protection:

- 20 Hz injection module (GE Multilin order code): GPM-S-G
- Coupling filter (GE Multilin order code): GPM-S-B
- Current transformer (GE order code): 204-SD-43737

To configure the settings:

 Select the Settings > Grouped Elements > Group 1(6) > Stator Ground > Subharmonic Stator Ground item to open the sub-harmonic stator ground fault settings window.

Figure 33: Sub-harmonic stator ground fault settings window	

🚥 Subharmonic Stator Ground // Remote Site 3: G60 IED 1: Sett 💶 🗵 🗙					
Save Restore Default Reset VIEW ALL					
SETTING	SETTING PARAMETER				
Function	Enabled				
SH Stator GND Stage 1 Pickup	1 kOhm				
SH Stator GND Stage 1 Pickup Delay	0.1 s				
SH Stator GND Stage 2 Pickup	1 kOhm				
SH Stator GND Stage 2 Pickup Delay	0.1 s				
SH CT Angle Compensation	1.4 degrees				
SH Stator Ground OC Pickup	1.000 pu				
SH Stator Ground OC Delay	0.10 s				
SH Stator Ground Voltage Supervision	0.000 pu				
SH Stator Ground Current Supervision	0.000 pu				
Block	Virt lp 1 On (VI1)				
Target	Disabled				
Events	Enabled				
G60 IED 1 Settings: Grouped Elements: Group 1: Stator G Screen ID: 0					

The following settings are available.

Function

Range: Enabled, Disabled Default: Disabled

This setting enables and disables the sub-harmonic stator ground fault element.

SH Stator Ground Stage 1 Pickup

Range: 1 to 20 kOhm in steps of 1 Default: 10 kOhm

If the measured stator ground primary resistance is less than the value specified by this setting, the stage 1 element picks up. Normally stage 1 is used to raise alarms and typical settings fall in the range of 5 to 10 k Ω . This setting is given in primary ohms.

SH Stator Ground Stage 1 Pickup Delay

Range: 0.1 to 600.0 seconds in steps of 0.1 Default: 10.0 seconds

This setting specifies a time delay for stage 1. Typical values are in the range of 5 to 10 seconds. This delay needs to be added to the operating time of the element to obtain the overall delay.

SH Stator Ground Stage 2 Pickup

Range: 1 to 20 kOhm in steps of 1

Default: 3 kOhm

If the measured stator ground primary resistance is less than the value specified by this setting, stage 2 element picks up. Normally stage 2 is used to raise trip signals and typical settings fall in the range of 1 to 5 k Ω . This setting is given in primary ohms.

SH Stator Ground Stage 2 Pickup Delay

Range: 0.1 to 600.0 seconds in steps of 0.1 Default: 1.0 seconds

This setting specifies a time delay for stage 2. Typical values are 1 to 2 seconds. This delay needs to be added to the operating time of the element to obtain the overall delay.

SH CT Angle Compensation

Range: -30.00 to 30.00 degrees in steps of 0.01 Default: 0.0 degrees

The CT used can introduce phase shifts. This setting compensates for the phase shifts to obtain accurate fault resistance calculations. Perform a test during commissioning at no fault condition by measuring the **SH Current Angle** reported by the G60. In a healthy machine, the sub-harmonic impedance is purely capacitive and the angle is 90°. The difference in angle can be used as the **SH CT Angle Compensation** setting. The preferred method of doing this is by inserting a resistance equal to the **SH Stator Ground Stage 2 Pickup** setting at the neutral of the generator and compensating the angle at this setting.

SH Stator Ground OC Pickup

Range: 0.001 to 1.000 pu in steps of 0.001 Default: 0.010 pu

This setting specifies the backup overcurrent pickup level based on sub-harmonic current. This protection can be used in addition to the sub-harmonic injection based 100% ground fault and fundamental phasor over voltage based 95% ground fault protection. One per-unit value of current is the sensitive ground CT secondary rating setting, which is always 5 A since the CT used is rated for 5 A secondary.

SH Stator Ground OC Delay

Range: 0.10 to 600.00 seconds in steps of 0.01 Default: 1.00 seconds

This setting specifies a time delay for sub-harmonic current based backup over current protection. Consider thermal capabilities of the loading resistor or neutral grounding transformer when setting this delay.

SH Stator Ground Voltage Supervision

Range: 0.000 to 0.100 pu in steps of 0.001 Default: 0.000 pu

The 20 Hz source can be monitored using this voltage supervision. This setting in perunit values (pu) provides the voltage level below which if the sub-harmonic voltage phasor magnitude remains for a period of 10 seconds, the SH STAT GND TRB OP operand is asserted. One per-unit value of voltage is the auxiliary VT nominal secondary voltage setting or the equivalent primary voltage if used in primary. A typical setting of 1 V is suggested. However, when the neutral grounding transformer's load resistance is less than 0.5 ohms, the use of voltage supervision is not recommended.

SH Stator Ground Current Supervision

Range: 0.000 to 0.100 pu in steps of 0.001

Default: 0.000 pu

The 20 Hz source can be monitored using this current supervision. This setting in per-unit values provides the current level below which if the sub-harmonic current phasor magnitude remains for a period of 10 seconds, the SH STAT GND TRB OP operand is asserted. One per-unit current is the sensitive ground CT secondary rating setting or the primary rating if used in primary. A typical setting of 0.002 pu (=10 mA in secondary) is recommended with the provided 5 A secondary CT.

Block

Range: any FlexLogic™ operand Default: OFF

Assertion of the FlexLogic operand assigned to this setting blocks operation of the subharmonic stator ground element.

Target

Range: Disabled, Self-Reset, Latched

Default: Self-Reset

This setting defines the operation of the sub-harmonic stator ground target message. When set to "Disabled", no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to "Self-Reset", the target message and LED indication follow the operate state of the element, and self-resets once the operate element condition clears. When set to "Latched", the target message and LED indication remain visible after the element output returns to logic 0 until a reset command is received by the relay.

Events

Range: Enabled, Disabled

Default: Disabled

This setting enables and disables the logging of sub-harmonic stator ground events in the sequence of events recorder.

Field ground fault protection

Overview

The following figure shows a field ground detection scheme using the G60 and the GPM-F. The field winding of a synchronous generator is represented electrically by the impedance $Z_F = Z_{F1} + Z_{F2}$. Under normal conditions, the field circuit is ungrounded. The capacitance C_F is the stray capacitance of the field, distributed along the field winding. This capacitance represents the only path for current to flow to ground under normal conditions.

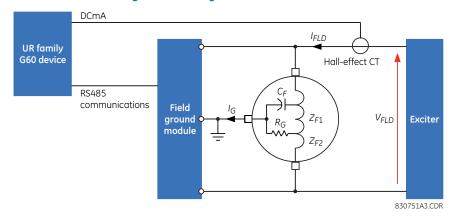
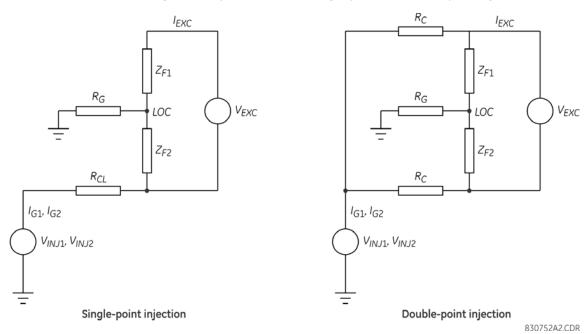



Figure 34: Field ground fault detection

The resistance R_G represents a breakdown of the field winding insulation providing a resistive path to ground through the field grounding brush. The insulation failure can occur anywhere, so the impedances Z_{F1} and Z_{F2} are unknown. The fault impedance R_G is also unknown. The purpose of the field ground detector is to measure this resistance.

Measurement of R_G is accomplished by injecting a voltage, V_{INJ} and measuring the resulting current, I_G . The measurement algorithm must be capable of discriminating between capacitive current due to C_F (which can be significant) and resistive current due to a fault. The exciter voltage, V_{FLD} is a DC value with a small ripple such that the impedance of the field is essentially resistive. The current I_{FLD} is a DC current with a range of tens, hundreds, or thousands of amps.

Figure 35: Equivalent circuit, single-point and double-point injection

Referring to the single-point injection circuit, the magnitude of I_{FLD} makes it evident that V_{INJ} cannot have a significant impact on the voltage drop across Z_{F2} . Therefore if two values (V_{INJ1} and V_{INJ2}) are injected, the following equations can be written:

$$V_{INJ1} = I_{G1}R_{G} + I_{G1}R_{CL}V_{F2}$$

$$V_{INJ2} = I_{G2}R_{G} + I_{G2}R_{CL}V_{F2}$$
Eq. 2

where

 I_{G1} is the current flowing due to V_{INJ1}

 I_{G2} is the current flowing due to V_{INJ2}

Solving for R_G we get:

$$R_{G} = \frac{(V_{INJ1} - V_{INJ2}) - (I_{G1} - I_{G2}) \times R_{CL}}{I_{G1} - I_{G2}}$$
Eq. 3

For the double-point injection circuit, R_{CL} is defined as:

$$R_{\rm CL} = \frac{R_{\rm C}}{2} \qquad \qquad \text{Eq. 4}$$

The V_{INJ} voltage is therefore composed of a square wave to create two levels of injection. Once the value of R_G is known it can be substituted into the V_{INJ} equation above to determine V_{F2} . If the V_{FLD} voltage (refer to the single-point injection circuit) is known through measurement then the location of the fault is simply V_{F2} / V_{FLD} . This gives the location of the fault as a percentage of field winding from negative terminal in case of single point injection. If double point injection is used, fault location cannot be determined. The relay displays an invalid fault location for approximately 10% for such conditions. The fault location cannot be determined if the field voltage is zero (that is, when the generator is not running). The fault location is displayed only when the measured field ground resistance is less than 500 K Ω .

Ground undercurrent

A brush lift-off condition prevents the field ground detector from operating. This is detected by calculating the RMS value of the ground current. It normally has a non-zero value due to the capacitance of the field winding. A drop in this signal indicates an open circuit in the injection path and the field ground under current feature detects this condition.

Field current monitoring

The G60 can monitor the field current via a Hall effect transducer that produces a 4 to 20 mA output. This device must be wired to a DCmA input of the G60 or a HardFiber Brick. Note that the relay must be configured with a transducer input card for the former case. Assignment of this signal to the field ground function allows the user to detect a field overcurrent or undercurrent condition. The maximum and minimum settings configured for scaling of this DCmA input is used to get the per-unit values of field current.

Field ground settings

To configure field ground settings:

1. Navigate to Settings > Grouped Elements > Group 1(6) > Field Ground Protection > Field Ground to open the field ground fault settings window.

Figure 36: Field ground fault settings

Field Ground // Remote Site 3: G60 IED 1: Settings: Group ID X B Save B Restore B Default B Reset VIEW ALL					
SETTING	PARAMETER				
Field Ground Function	Disabled				
Field Ground Injection Frequency	1.00 Hz				
Field Ground Inj Connection Type	Single Point				
Field Ground Stg1 Pickup	20 kohms				
Field Ground Stg1 Delay	10.0 s				
Field Ground Stg2 Pickup	5 kohms				
Field Ground Stg2 Delay	3.0 s				
Field Ground UC Pickup	1.00 mA				
Field Ground UC Delay	1.00 s				
Field Ground Block	OFF				
Field Ground Target	Self-reset				
Field Ground Events	Disabled				
G60 IED 1 Settings: Grouped Elements: Group 1: Field C Screen ID: 0					

The following settings are available.

Field Ground Function

Range: Enabled, Disabled Default: Disabled

This setting enables and disables the field ground fault element.

Field Ground Injection Frequency

Range: 0.1 to 3.0 Hz in steps of 0.1 Default: 1.00 Hz

This setting specifies the frequency of the signal to be injected into the field winding for detecting ground faults. The injection frequency selection depends on the value of field winding capacitance to ground. Use the following formula to set the injection frequency when the field winding capacitance is known in μ F.

$$F_{inj} = \frac{2.5}{C_F}$$
 Eq. 5

The C_F value is in microfarads.

The table provides examples of injection frequency settings for various field winding capacitance values. For field winding capacitances greater than 10 μF , resistance measurements are less accurate.

Table 6: Examples of injection frequency settings

C _F	F _{INJ}
1 µF	2.50 Hz
2 µF	1.50 Hz
3 µF	0.83 Hz
4 µF	0.63 Hz
5 µF	0.50 Hz
6 µF	0.42 Hz
7 μF	0.36 Hz
8 µF	0.31 Hz
9 µF	0.28 Hz
10 µF	0.25 Hz

Field Ground Inj Connection Type

Range: Single Point, Double Point

Default: Single Point

Field ground protection can be implemented by injecting a low frequency signal either into both positive and negative terminals of the field winding or only into the negative terminal of the field winding. For single point injection, the G60 provides the feature of fault location. In case of a field ground fault, the G60 displays the location of the fault in the field winding as a percentage of the winding from the negative terminal. If the preference is to keep the injection symmetrical into the field winding, then double point injection has to be done but the fault location feature is not available. This setting has to match the type of connection on the field ground module.

Field Ground Stg1 Pickup

Range: 1 to 500 kOhms in steps of 1

Default: 20 kOhms

If the measured ground resistance is less than the value specified by this setting, then the stage 1 element picks up. Normally stage 1 is used to raise alarms and typical settings fall in the range of 10 to 40 k Ω .

Field Ground Stg1 Delay

Range: 0.1 to 600.0 seconds in steps of 0.1 Default: 10.0 seconds

This setting specifies a time delay for stage 1. Typical settings are in the range of 10 to 15 seconds. This delay needs to be added to the operating time of the element to obtain the overall delay.

Field Ground Stg2 Pickup

Range: 1 to 500 kOhms in steps of 1 Default: 5 kOhms

If the measured ground resistance is less than the value specified by this setting, then the stage 2 element picks up. Normally stage 2 is used to raise trip signals and typical settings fall in the range of 2 to 5 k Ω .

Field Ground Stg2 Delay

Range: 0.1 to 600.0 seconds in steps of 0.1

Default: 3.0 seconds

This setting specifies a time delay for stage 2. Typical settings are in the range of 3 to 5 seconds. This delay needs to be added to the operating time of the element to obtain the overall delay.

Field Ground UC Pickup

Range: 0.05 to 100.00 mA in steps of 0.1 Default: 1 00 mA

This setting specifies the ground undercurrent level below which a brush open condition is detected. A brush lift-off condition prevents the field ground detector from operating. This is detected by calculating the RMS value of the ground current. It normally has a non-zero value due to the capacitance of the field winding. A drop in this signal indicates an open circuit in the injection path. To set this value, the ground current in a healthy operating condition preferably with zero field voltage needs to be recorded from G60 actual values (performed during commissioning). Configure this setting to be 60 to 70% of that normal value.

Field Ground UC Delay

Range: 0.10 to 600.00 s in steps of 0.1 Default: 1.0 seconds

This setting specifies a time delay for the field ground undercurrent element. Typical settings are in the range of 20 to 30 seconds. This delay needs to be added to the operating time of the element to obtain the overall delay.

Field Ground Block

Range: any FlexLogic operand Default: OFF

Assertion of the FlexLogic operand assigned to this setting blocks operation of the field ground element.

Field Ground Target

Range: Disabled, Self-Reset, Latched Default: Self-Reset

This setting defines the operation of the field ground target message. When set to "Disabled", no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to "Self-Reset", the target message and LED indication follow the operate state of the element, and self-resets once the operate element condition clears. When set to "Latched", the target message and LED indication remains visible after the element output returns to logic 0 until a reset command is received by the relay.

Field Ground Events

Range: Enabled, Disabled

Default: Disabled

This setting enables and disables the logging of field ground events in the sequence of events recorder.

Field current settings

To configure field current fault detector settings:

1. Navigate to Settings > Grouped Elements > Group 1(6) > Field Ground Protection > Field Current to open the field current fault settings window.

🚥 Field Current // Remote Site	3: G60 IED 1: Settings: Group 💶 🗙
🕒 Save 🛱 Restore	Default Reset VIEW ALL
SETTING	PARAMETER
Field Current Function	Disabled
Field Current Origin	NONE
Field Current OC Pickup	0.80 pu
Field Current OC Delay	1.00 s
Field Current UC Pickup	0.20 pu
Field Current UC Delay	1.00 s
Field Current Block	OFF
Field Current Target	Self-reset
Field Current Events	Disabled
G60 IED 1 Settings: Grouped Elemer	nts: Group 1: Field G Screen ID: 0

Figure 37: Field current fault settings

The following settings are available.

Field Current Function

Range: Enabled, Disabled Default: Disabled

This setting enables and disables the field current fault element.

Field Current Origin

Range: None, dcmA 1, dcmA 2,..., dcmA 24, RTD1, RTD2,..., RTD8 Default: None

This setting selects the DCmA input to be used for the field current protection element. A DCmA input can be selected from up to 24 possible inputs, depending on the number of installed transducer modules. In a HardFiber Brick / G60 system, this setting can point to one of the Resistance Temperature Detector (RTD) inputs mapped to a Brick DCmA input. In both cases, the minimum and maximum scaling settings of that transducer input are used to perform the per-unit conversion. The unit setting are configured as "Amps" if the transducer input is used.

These minimum and maximum settings are set as per the Hall sensor current rating. The per-unit computation is scaled to a base equal to the maximum value setting, with a zero per-unit value corresponding to zero in the unit system used by the maximum value setting. For example, in the case where the maximum value setting is 100 A, a trip level of 75 A is achieved by setting the operate level at 0.75 pu, regardless of the range (for example, 4 to 20 mA, 0 to 20 mA, and so on) and regardless of the minimum value setting.

Field Current OC Pickup

Range: 0.05 to 1.00 pu in steps of 0.01 Default: 0.80 pu

This setting specifies the field current level (in per-unit values) above which the overcurrent element picks up.

Field Current OC Delay

Range: 0.00 to 600.00 seconds in steps of 0.01 Default: 1.00 seconds

This setting specifies a time delay for the overcurrent element. This delay is added to the operating time of the element to obtain the overall delay.

Field Current UC Pickup

Range: 0.05 to 1.00 pu in steps of 0.01 Default: 0.20 pu

This setting specifies the field current level above which the undercurrent element picks up.

Field Current UC Delay

Range: 0.00 to 600.00 seconds in steps of 0.01 Default: 1.00 seconds

This setting specifies a time delay for the undercurrent element. This delay is added to the operating time of the element to obtain the overall delay.

Field Current Block

Range: any FlexLogic operand Default: OFF

Assertion of the FlexLogic operand assigned to this setting blocks operation of the field current ground element.

Field Current Target

Range: Disabled, Self-Reset, Latched

Default: Self-Reset

This setting defines the operation of the field current ground target message. When set to "Disabled", no target message or illumination of a faceplate LED indicator is issued upon operation of the element. When set to "Self-Reset", the target message and LED indication follow the operate state of the element, and self-resets once the operate element condition clears. When set to "Latched", the target message and LED indication remains visible after the element output returns to logic 0 until a reset command is received by the relay.

Field Current Events

Range: Enabled, Disabled Default: Disabled

This setting enables and disables the logging of field current ground events in the sequence of events recorder.

GPM Field and Stator Ground Fault Protection Modules

Chapter 6: Actual values and messages

Sub-harmonic stator ground actual values

To view actual values:

1. Navigate to **Actual Values > Metering > Subharmonic Stator Ground** to open the sub-harmonic stator ground fault actual values window.

Figure 38: Sub-harmonic stator ground fault actual values

📼 Subharmonic Stator Ground // Remote Site 3: G60 I 💶 🗙						
Save Restore	efault 🔛 Reset VIEW A					
Parameter	Value					
Subharmonic Injection Voltage	0.000 V					
Subharmonic Injection Current	0.000 A					
Subharmonic Injection Current Angle	84.7					
Stator Ground Resistance	500.000 kOhm					
G60 IED 1 Actual Values: Metering	Screen ID: 0					

Field ground actual values

To view actual values:

1. Navigate to **Actual Values > Metering > Field Ground** to open the sub-harmonic stator ground fault actual values window.

Figure 39: Field ground fault actual values

🎫 Field Ground // Remote Site 3: G60 IED 1: Actual V 💶 🗖 🗙					
Save Restore	Default 💾 Reset VIEW				
Parameter	Value				
Field Ground Resistance	981.370 kohms				
Field Ground Field Voltage	0.0 V				
Field Ground Injected Voltage	14.793 V				
Field Ground Fault Location	-10 %				
Field Ground Current	0.18 mA				
Field Current	494.586 A				
G60 IED 1 Actual Values: Metering	Screen ID: 0				

GPM-F module messages

This section outlines self-test error messages that can display for the GPM-F modules.

GPM-F FAILURE: TROUBLE 01

Latched target message: No

Description of problem: The G60 detects loss of communication with the field ground module on the RS485 link

Frequency of this test: Every five seconds

What to do: Check the field ground module and its RS485 connection to the G60

GPM-F FAILURE: TROUBLE 02

Latched target message: No

Description of problem: The field ground module reports trouble with injected low frequency signal voltage level or frequency

Frequency of this test: Every second

What to do: Verify that the injection voltage actual value in the G60 is around 15 V. If the message remains, cycle power to the field ground module. If the problem persists, contact the factory.

GPM-F FAILURE: TROUBLE 03

Latched target message: No

Description of problem: Field ground module reports trouble with its circuitry

Frequency of this test: Every second

What to do: Verify that the actual values in the G60 are within accepted values. Cycle power to the field ground module. If the problem remains, contact the factory.

GPM-F FAILURE: TROUBLE 04

Latched target message: No

Description of problem: The setting for field ground module injection frequency does not match the injection frequency reported by the module

Frequency of this test: Every second

What to do: The field ground module is possibly connected to another G60 through its alternate RS485 port and possibly receiving another frequency setting. Ensure that both G60 devices connected to the same field ground module have the same injection frequency setting.

GPM-F FAILURE: TROUBLE 05

Latched target message: No

Description of problem: The hardware revision of the field ground module is not supported by the present revision of the G60

Frequency of this test: Every second

What to do: Check the hardware revision of the field ground module in the G60 actual values and contact the factory.

GPM-F FAILURE: TROUBLE 06

Latched target message: No

Description of problem: The firmware revision of the field ground module is not supported by the present revision of the G60

Frequency of this test: Every second

What to do: Check the firmware revision of the field ground module in the G60 actual values and contact the factory.

GPM Field and Stator Ground Fault Protection Modules

Chapter 7: Additional parameters

This chapter lists FlexLogic operands and Modbus memory map registers that are available when the field and stator ground modules are installed.

FlexLogic operands

The following FlexLogic operands are available to the G60 when the field and stator ground modules are installed.

FIELD GROUND FAULT PROTECTION OPERANDS

FIELD GROUND FAULT PROTECTIO	N OPERANDS
FIELD CURRENT OC DPO	Asserted when the field current overcurrent element drops out
FIELD CURRENT OC OP	Asserted when the field current overcurrent element operates
FIELD CURRENT OC PKP	Asserted when the field current overcurrent element picks up
FIELD CURRENT UC DPO	Asserted when the field current undercurrent element drops out
FIELD CURRENT UC OP	Asserted when the field current undercurrent element operates
FIELD CURRENT UC PKP	Asserted when the field current undercurrent element picks up
FIELD GND INJ UC DPO	Asserted when the field ground injection undercurrent element drops out
FIELD GND INJ UC OP	Asserted when the field ground injection undercurrent element operates
FIELD GND INJ UC PKP	Asserted when the field ground injection undercurrent element picks up
FIELD GND STG1 DPO	Asserted when stage 1 of the field ground fault element drops out
FIELD GND STG1 OP	Asserted when stage 1 of the field ground fault element operates
FIELD GND STG1 PKP	Asserted when stage 1 of the field ground fault element picks up
FIELD GND STG2 DPO	Asserted when stage 2 of the field ground fault element drops out

FIELD GND STG2 OP	Asserted when stage 2 of the field ground fault element operates
FIELD GND STG2 PKP	Asserted when stage 2 of the field ground fault element picks up
GPM-F FAILURE	Asserted when a GPM-F self-test error has been detected
SUB-HARMONIC STATOR GRO	UND FAULT DETECTOR OPERANDS
SH STAT GND OC DPO	Asserted when the sub-harmonic stator ground fault overcurrent element drops out
SH STAT GND OC OP	Asserted when the sub-harmonic stator ground fault overcurrent element operates
SH STAT GND OC PKP	Asserted when the sub-harmonic stator ground fault overcurrent element picks up
SH STAT GND STG1 DPO	Asserted when stage 1 of the sub-harmonic stator ground fault element drops out
SH STAT GND STG1 OP	Asserted when stage 1 of the sub-harmonic stator ground fault element operates
SH STAT GND STG1 PKP	Asserted when stage 1 of the sub-harmonic stator ground fault element picks up
SH STAT GND STG2 DPO	Asserted when stage 2 of the sub-harmonic stator ground fault element drops out
SH STAT GND STG2 OP	Asserted when stage 2 of the sub-harmonic stator ground fault element operates
SH STAT GND STG2 PKP	Asserted when stage 2 of the sub-harmonic stator ground fault element picks up
SH STAT GND TRB OP	Asserted when the sub-harmonic voltage phasor magnitude remains lower than the programmed voltage supervision value for 10 seconds

Modbus memory map

The following Modbus memory map registers are available to the G60 when the field and stator ground modules are installed. The particular registers actually present depend on the G60 firmware version, order codes, and module options.

The map is also viewable in a web browser. In the browser, enter the IP address of the G60 and click the option.

Address	Description	Range	Units	Step	Format	Default	
Sub-harn	Sub-harmonic stator ground fault protection actual values (read only)						
1678	Subharmonic Injection Voltage	0 to 999999.999	V	0.001	F060	0	
167A	Subharmonic Injection Current	0 to 999999.999	A	0.001	F060	0	
167C	Stator Ground Resistance	0 to 500	kOhm	0.001	F003	500000	
167E	Stator Ground Resistance Exceeded	0 to 0.1		0.1	F208	(none)	
167F	Subharmonic Injection Current Angle	-360 to 360		0.1	F002	0	
Field gro	Field ground fault protection actual values (read only)						
6640	Field Ground Resistance	0 to 20000	kOhm	0.001	F003	200000 00	
6642	Field Ground Current	0 to 655.35	mA	0.01	F001	0	
6643	Field Ground Injected Voltage	-32.767 to 32.767	V	0.001	F002	0	

	Field Ground Fault Location Field Ground Field Voltage Field Current Field Current Units Field Current Units Subharmonic Stator Ground Function Subharmonic Stator Ground Stage 1	-30000 to 30000 -3276.8 to 3276.7 -9999.999 to 9999.999 J/write) 0 to 1	% V 	1 0.1 0.001	F002 F002 F004 F206	-10 0 0
6646 6648 Sub-harm 6710	Field Current Field Current Units onic stator ground fault settings (read Subharmonic Stator Ground Function	3276.7 -9999.999 to 9999.999 d/write)		0.001	F004	-
6648 Sub-harm 6710	Field Current Units onic stator ground fault settings (read Subharmonic Stator Ground Function	9999.999 //write)				0
Sub-harm 6710	onic stator ground fault settings (read Subharmonic Stator Ground Function	l/write)			F206	
6710	Subharmonic Stator Ground Function					"A"
		0 to 1	1			
6711	Subharmonic Stator Ground Stage 1			1	F102	0 (Disable d)
	Pickup	1 to 20	kOhm	1	F001	10
6712	Subharmonic Stator Ground Stage 1 Pickup Delay	0.1 to 600	S	0.1	F001	100
6713	Subharmonic Stator Ground Stage 2 Pickup	1 to 20	kOhm	1	F001	3
6714	Subharmonic Stator Ground Stage 2 Pickup Delay	0.1 to 600	S	0.1	F001	10
6715	Subharmonic CT Angle Compensation	-30 to 30	degre es	0.1	F002	0
6718	Subharmonic Stator Ground OC Pickup	0.001 to 1	pu	0.001	F001	10
6719	Subharmonic Stator Ground OC Delay	0.1 to 600	S	0.01	F001	100
671A	Subharmonic Stator Ground Volt Supv	0 to 0.1	pu	0.001	F001	0
671B	Subharmonic Stator Ground Curr Supv	0 to 0.1	pu	0.001	F001	0
671C	Subharmonic Stator Ground Block	0 to 4294967295			F300	0
671E	Subharmonic Stator Ground Events	0 to 1		1	F102	0 (Disable d)
671F	Subharmonic Stator Ground Target	0 to 2		1	F109	0 (Self- reset)
Field curre	ent settings (read/write)					
7E74	Field Current Function	0 to 1		1	F102	0 (Disable d)
7E75	Field Current Origin	0 to 48		1	F151	0 (NONE)
7E76	Field Current Over Current (OC) Pickup	0.05 to 1	pu	0.01	F001	80
7E77	Field Current Over Current (OC) Delay	0 to 600	secon ds	0.01	F001	100
7E78	Field Current Under Current (UC) Pickup	0.05 to 1	pu	0.01	F001	20
7E79	Field Current Under Current (UC) Delay	0 to 600	secon ds	0.01	F001	100
7E7A	Field Current Block	0 to 4294967295		1	F300	0
7E7C	Field Current Target	0 to 2		1	F109	0 (Self- reset)
7E7D	Field Current Events	0 to 1		1	F102	0 (Disable d)

Address	Description	Range	Units	Step	Format	Default
7E7E	Field Ground Function	0 to 1		1	F102	0 (Disable d)
7E7F	Field Ground Injection Frequency	0.1 to 3	Hz	0.01	F001	100
7E80	Field Ground Injection Connection Type	0 to 1		1	F613	0 (Single Point)
7E81	Field Ground STG1 Pickup	1 to 500	kOhm	1	F001	20
7E82	Field Ground STG1 Delay	0.1 to 600	secon ds	0.1	F001	100
7E83	Field Ground STG2 Pickup	1 to 500	kOhm	1	F001	5
7E84	Field Ground STG2 Delay	0.1 to 600	secon ds	0.1	F001	30
7E85	Field Ground UC Pickup	0.05 to 100	mA	0.01	F001	100
7E86	Field Ground UC Delay	0.1 to 600	secon ds	0.01	F001	100
7E87	Field Ground Block	0 to 4294967295		1	F300	0
7E89	Field Ground Target	0 to 2		1	F109	0 (Self- reset)
7E8A	Field Ground Events	0 to 1		1	F102	0 (Disable d)

Modbus memory map data formats

F001: UNSIGNED 16 BIT INTEGER

Unsigned 16-bit integer numerical data.

F002: SIGNED 16 BIT INTEGER

Singed 16-bit integer numerical data.

F003: UNSIGNED 32 BIT INTEGER

Unsigned 32-bit integer (two registers) numerical data.

The high-order word is stored in the first register, and the low-order word is stored in the second register.

F004: SIGNED 32 BIT INTEGER

Signed 32-bit integer (two registers) numerical data. The high-order word is stored in the first register, and the low-order word is stored in the second register.

F060: IEEE 32-BIT FLOATING POINT NUMBER

IEEE 32-bit floating point number numerical data.

F102: ENABLE AND DISABLE FUNCTION

Enumeration	Function
0	Disabled
1	Enabled

F109: CONTACT OUTPUT OPERATION

Enumeration	Operation
0	Self-reset
1	Latched
2	Disabled

F141: SELF TEST ERRORS

Products	Bitmask	Error
All	0	Any Self Tests
Ш	1	IRIG-B Failure
Ш	2	Port 1 Offline
Ш	3	Port 2 Offline
н	4	Port 3 Offline
н	5	Port 4 Offline
Ш	6	Port 5 Offline
Ш	7	Port 6 Offline
н	8	RRTD Communications Failure
Ш	9	Voltage Monitor
н	10	FlexLogic Error Token
н	11	Equipment Mismatch
н	12	Process Bus Failure
н	13	Unit Not Programmed
н	14	System Exception
11	15	Latching Output Discrepancy
н	17	Maintenance Alert 01
н	18	SNTP Failure
н	19	Maintenance Alert
н	20	Maintenance Alert
11	21	Maintenance Alert
н	22	Temperature Monitor
All except B90, L60	23	Process Bus Trouble
All except B90, L60	24	Brick Trouble
All	25	Field RTD Trouble
U	26	Field TDR Trouble
11	27	RxGOOSE Offline
U.	28	Direct Device Offline
U	29	Maintenance Alert
U.	30	Any Minor Error
U.	31	Any Major Error
н	33	Maintenance Alert
н	64	Maintenance Alert
н	65	IEC 61850 Data Set
н	66	Aggregator Error
н	67	Unit Not Calibrated
н	68	Settings Save Error
н	69	SRAM Data Error
0	70	Program Memory

Products	Bitmask	Error
u	71	Watchdog Error
н	72	Low on Memory
н	73	Prototype Firmware
н	74	Module Failure 01
н	75	Module Failure 02
н	76	Module Failure 03
н	77	Module Failure 04
н	78	Module Failure 05
н	79	Module Failure 06
н	80	Module Failure 07
н	81	Module Failure 08
н	82	Module Failure 09
н	83	Incompatible H/W
н	84	Module Failure 10
н	85	Module Failure 11
н	86	Module Failure 12
н	87	High ENET Traffic
н	89	Relay Restart
н	90	FGM Failure
н	91	FGM Failure
н	92	FGM Failure
н	93	FGM Failure
н	94	FGM Failure
н	95	FGM Error
н	96	Maintenance Alert
н	97	PHY Monitor
и	98	Storage Media Alarm
н	99	Wrong Transceiver
н	100	Power Supply Warning
и	101	RAM Filesystem Fail
н	102	Backup CID Imported
н	103	Defaulted to ICD
н	104	TO Install Settings

Products	Bitmask	Definition
All	0	Events Cleared
	1	Oscillography Triggered
	2	Date/time Changed
"	3	Default Settings Loaded
II	4	Test Mode Forcing On
II	5	Test Mode Forcing Off
"	6	Power On
н	7	Power Off
n	8	Relay In Service
n	9	Relay Out of Service
"	10	Watchdog Reset
"	11	Oscillography Clear
	12	Reboot Command
n	13	LED Test Initiated
u	14	Flash Programming
"	15	Fault Report Trigger
"	16	User-Programmable Fault Report Trigger
	17	
11	18	Reload CT/VT module (DSP) Settings
н	19	
	20	Ethernet Port 1 Offline
	21	Ethernet Port 2 Offline
	22	Ethernet Port 3 Offline
11	23	Ethernet Port 4 Offline
11	23	Ethernet Port 5 Offline
11	24	Ethernet Port 6 Offline
"	25	Test Mode Isolated
	-	Test Mode Forcible
"	27	
	28	Test Mode Disabled
	29	Temperature Warning On
	30	Temperature Warning Off
	31	Unauthorized Access
	32	System Integrity Recovery
	33	System Integrity Recovery 06
	34	System Integrity Recovery 07
N60	35	Slot B Module
	36	Slot D Module
"	37	Slot F Module
"	38	Slot G Module
I	39	Slot H Module
	40	Slot J Module
II	41	Slot K Module
II	42	Slot L Module
"	43	Slot M Module
"	44	Slot N Module

F146: MISCELLANEOUS EVENT CAUSES

Products	Bitmask	Definition
"	45	Slot P Module
	46	Slot R Module
	47	Slot S Module
	48	Slot T Module
	49	Slot U Module
	50	Slot V Module
	51	Slot W Module
	52	Slot X Module
All	53	CID Imported
	54	Backup CID Imported
	55	ICD Applied
	56	SYS INTEGR RECOV 08
C60 D60 F60 G60 L30 L90 N60 T60	57	PMU 1 Record Triggered
C60 N60	58	PMU 2 Record Triggered
N60	59	PMU 3 Record Triggered
	60	PMU 4 Record Triggered
	61	PMU 5 Record Triggered
н	62	PMU 6 Record Triggered

F151: RTD SELECTION

Bitmask	Selected RTD
0	No RTD selected
1	RTD 1
2	RTD 2
3	RTD 3
4	RTD 4
5	RTD 5
6	RTD 6
7	RTD 7
8	RTD 8
9	RTD 9
10	RTD 10
11	RTD 11
12	RTD 12
13	RTD 13
14	RTD 14
15	RTD 15
16	RTD 16
17	RTD 17
18	RTD 18
19	RTD 19
20	RTD 20
21	RTD 21
22	RTD 22
23	RTD 23

Bitmask	Selected RTD
24	RTD 24
25	RTD 25
26	RTD 26
27	RTD 27
28	RTD 28
29	RTD 29
30	RTD 30
31	RTD 31
32	RTD 32
33	RTD 33
34	RTD 34
35	RTD 35
36	RTD 36
37	RTD 37
38	RTD 38
39	RTD 39
40	RTD 40
41	RTD 41
42	RTD 42
43	RTD 43
44	RTD 44
45	RTD 45
46	RTD 46
47	RTD 47
48	RTD 48

F206: 6-CHARACTER ASCII TEXT

Unsigned 48-bit integer (three registers) numerical data. For every 16-bit register (two characters), the most-significant byte represents the first character, and the least-significant byte represents the second character.

F208: 2-CHARACTER ASCII TEXT

F300: FLEXLOGIC BASE TYPE (15-bit type)

The FlexLogic BASE type is 14 bits and is combined with a 17-bit descriptor and 1 bit for the protection element to form a 32-bit value. The combined bits are of the form: PTTTTTTTTTTDDDDDDDDDDDDDDDDDDD, where P bit if set indicates that the FlexLogic type is associated with a protection element state and D represents bits for the type in F124 format. If P bit is not set, then the T represents bits for the type and D represents range.

The values in square brackets indicate the base type with P prefix [PTTTTTTTTTTT] and the values in round brackets indicate the descriptor range. The left-most D bit indicates whether the type is an ON or OFF type. There can be a total 65535 BASE type elements, 131071 protection element IDs, and 16383 element states. There can be a total of 65535 descriptors of each type.

[0] Off (0) - This is boolean FALSE value
[1] On (1) - This is boolean TRUE value
[2] CONTACT INPUTS (1 to 96)

[3] CONTACT INPUTS OFF (1 to 96)

- [4] VIRTUAL INPUTS (1 to 32)
- [6] VIRTUAL OUTPUTS (1 to 64)
- [8] CONTACT OUTPUTS
- [10] CONTACT OUTPUTS VOLTAGE DETECTED (1 to 64)
- [11] CONTACT OUTPUTS VOLTAGE OFF DETECTED (1 to 64)
- [12] CONTACT OUTPUTS CURRENT DETECTED (1 to 64)
- [13] CONTACT OUTPUTS CURRENT OFF DETECTED (1 to 64)
- [14] REMOTE INPUTS (1 to 32)
- [16] DIRECT INPUTS (1 to 96)
- [18] REMOTE OUTPUT DNA BIT PAIRS (1 to 32)
- [20] REMOTE OUTPUT UserSt BIT PAIRS (1 to 32)
- [22] REMOTE DEVICE ONLINE (1 to 16)
- [24] MISCELLANEOUS EQUATION
- [26] TELEPROTECTION INPUTS
- [28] INSERT (via keypad only)
- [30] DELETE (via keypad only)
- [32] END
- [34] NOT (1 INPUT)
- [36] 2 INPUT XOR (0)
- [38] LATCH SET/RESET (2 inputs)
- [40] OR (2 to 16 inputs)
- [42] AND (2 to 16 inputs)
- [44] NOR (2 to 16 inputs)
- [46] NAND (2 to 16 inputs)
- [48] TIMER (1 to 32)
- [50] ASSIGN VIRTUAL OUTPUT (1 to 64)
- [52] ONE SHOT
- [54] SELF-TEST ERROR (see F141 for range)
- [56] PLATFORM DIRECT INPUT (1 to 96)
- [58] PLATFORM DIRECT OUTPUT (1 to 96)
- [60] PLATFORM DIRECT DEVICE (1 to 8)
- [62] MISCELLANEOUS EVENTS (see F146 for range)
- [64] PDC NETWORK CONTROL
- [66] PMU RECORDER OUT OF MEMORY
- [68] PMU RECORDER STOPPED
- [128 to 255] ELEMENT STATES (see the Element States section in the G60 Modbus memory map)

F613: FIELD GROUND MODULE (FGM) INJECTION CONNECTION TYPE

Enumeration	Connection type	
0	Single-point	
1	Double-point	

GPM Field and Stator Ground Fault Protection Modules

Chapter 8: Maintenance

This chapter outlines repair, storage, and disposal.

Repairs

There are no parts that can be replaced in the field by the end user. The firmware and software can be upgraded without return of the device to the factory.

For issues not solved by troubleshooting, the process to return the device to the factory for repair is as follows:

- Contact a GE Grid Solutions Technical Support Center. Contact information is found in the first chapter.
- Obtain a Return Materials Authorization (RMA) number from the Technical Support Center.
- Verify that the RMA and Commercial Invoice received have the correct information.
- Tightly pack the unit in a box with bubble wrap, foam material, or styrofoam inserts or packaging peanuts to cushion the item(s). You may also use double boxing whereby you place the box in a larger box that contains at least 5 cm of cushioning material.
- Ship the unit by courier or freight forwarder, along with the Commercial Invoice and RMA, to the factory.

GE GRID SOLUTIONS				
650 MARKLAND STREET				
MARKHAM, ONTARIO				
CANADA L6C 0M1				
ATTN: SERVICE DEPT.				
RMA# :				

Customers are responsible for shipping costs to the factory, regardless of whether the unit is under warranty.

• Fax a copy of the shipping information to the GE Grid Solutions service department in Canada at +1 905 927 5098.

Use the detailed return procedure outlined at <u>https://www.gegridsolutions.com/multilin/support/ret_proc.htm</u> The current warranty and return information are outlined at <u>https://www.gegridsolutions.com/multilin/warranty.htm</u>

Storage

Store the unit indoors in a cool, dry place. If possible, store in the original packaging.

Disposal

There are no special requirements for disposal of the unit at the end its service life. To prevent non-intended use of the unit, dismantle the unit, and recycle the metal when possible.

GPM Field and Stator Ground Fault Protection Modules

Appendix A: Miscellaneous

This chapter provides the warranty and the document revision history.

Warranty

For products shipped as of 1 October 2013, GE Grid Solutions warrants most of its GE manufactured products for 10 years. For warranty details including any limitations and disclaimers, see the Terms and Conditions at

https://www.gegridsolutions.com/multilin/warranty.htm

For products shipped before 1 October 2013, the standard 24-month warranty applies.

Revision history

The table outlines the releases and revision history of this document. The suffix on the 1601 part number follows the UR Family release cycle.

Table 8: Revision history (English)

Publication number	Part number	Firmware	Release date	ECO
GEK-113231	1601-0256-V1	1.0x	1 September 2010	10-1812
GEK-113231A	1601-0256-V2	1.0x	7 February 2011	10-1966
GEK-113231B	1601-0256-Z1	1.0x	15 February 2013	13-0126
GEK-113231C	1601-0256-AC1	1.0x	1 May 2016	16-2703
GEK-113231D	1601-0256-AF1	1.0x	1 May 2017	17-3647
GEK-113231E	1601-0256-AG1	1.0x	31 March 2018	18-4430
GEK-113231F	1601-0256-AH1	1.0x	9 October 2018	18-4790

Table 9: Major changes to GPM manual version AH1 (English)

Page	Description
	Updated several figures, increasing size and improving line widths
7	Added to Stator Ground Protection CT specifications, specifically relay class and weight
26	Added Figure 23 Dimensions for Stator Ground Protection CT (204-SD-43737)

Table 10: Major changes to GPM manual version AG1 (English)

Page	Description
12	Updated Table 1 Pin Assignments for GPM-F-L, specifically C2 to C4 entries
17	Updated Table 2 Pin Assignments for GPM-F-HM specifically C2 to C4 entries
22	Updated Figure 20 title to "Dimensions for panel-mounted GPM-S-G (discontinued)" instead of "first generation"
25	Updated Figure 24 title to "Mounting for panel-mounted GPM-S-G (discontinued)" instead of "first generation"
32	Updated equation 1 in Sub-harmonic Stator Ground Fault Settings section

Table 11: Major changes to GPM manual version AF1 (English)

Page	Description
	General revision
	Updated template to 8.5 \times 11 inch format instead of small format 5.5 \times 7.25 inch size to reflect current printing process
	Updated title from Quick Reference Guide to Instruction Manual for consistency with Universal Relay (UR) products
5	Updated several specifications, including Terminals
28	Added warning before Figure 28 GPM-S-B Module Showing Terminal Blocks
31	Updated Settings chapter to be consistent with G60 instruction manual
47	Updated Modbus memory map and F codes

Table 12: Major changes to GPM manual version AC1 (English)

Page	Description
	Updated branding from GE Digital Energy to GE Grid Solutions and refreshed template
25, 39	Updated introductory sentences for firmware upgrade
29	Added sentence regarding use of 8G, 8J, 8M, 8R modules to connect to G60
30	Updated Figure 19 Dimensions for GPM-S-G Panel-Mounted Unit for dimensions and screw locations
34	Updated Figure 23 Mounting Diagram for GPM-S-G Wall-Mounted Unit to reflect change in screw locations
35	Updated Figure 25 Rear View of GPM-S-G Module Showing Terminal Blocks to reflect change in screw locations
73	Added Maintenance chapter with repair, storage, and disposal information
75	Revised warranty to 10 years

Page	Description
	Updated with general editing
4	Added GPM-S-G Module Contact Input specifications
11	Added content that three contact inputs provided for GPM-F-L pin assignments for connectors and that low frequency injection stops upon closure of any of the contact inputs.
17	Added content that three contact inputs provided for GPM-F-HM pin assignments for connectors and that low frequency injection stops upon closure of any of the contact inputs.
30	Added content that two contact inputs are provided for GPM-S-G pin assignments for connectors and that 20 Hz injection stops upon closure of any of the contact inputs.

Table 13: Major changes to GPM manual version Z1 (English)